Activity
Time:
Colloquium: Grigorios Loukides
Date:
3:30 pm –
4:30 pm
Zoom
Grigorios Loukides, Associate Professor
Department of Informatics, King’s College London
Thursday, October 7, 2021
3:30-4:30 CST
Via Zoom: https://unl.zoom.us/j/95212231292?pwd=UHVRUThzZTh0bGhjQWtjakM3bS9BUT09
Meeting ID: 952 1223 1292
Passcode: cse
“Combinatorial String Dissemination”
String data are often disseminated to support applications such as location-based service provision or DNA sequence analysis. This dissemination, however, may expose sensitive patterns that model confidential knowledge (e.g., trips to mental health clinics from a string representing a user’s location history). In this talk, I will consider the problem of sanitizing a string by concealing the occurrences of sensitive patterns, while maintaining data utility, in two settings that are relevant to many common string processing tasks. In the first setting, the goal is to generate the minimal-length string that preserves the order of appearance and frequency of all non-sensitive patterns. In the second setting, the goal is to generate a string that is at minimal edit distance from the original string, in addition to preserving the order of appearance and frequency of all non-sensitive patterns. I will present algorithms for each setting and experiments evaluating these algorithms.
Grigorios Loukides is currently an Associate Professor at the Department of Informatics King’s College London. His main research interest is data mining. Grigorios’ research investigates theoretical and practical aspects including algorithmic design and optimization and considers applications including social networks and biomedical informatics.
Department of Informatics, King’s College London
Thursday, October 7, 2021
3:30-4:30 CST
Via Zoom: https://unl.zoom.us/j/95212231292?pwd=UHVRUThzZTh0bGhjQWtjakM3bS9BUT09
Meeting ID: 952 1223 1292
Passcode: cse
“Combinatorial String Dissemination”
String data are often disseminated to support applications such as location-based service provision or DNA sequence analysis. This dissemination, however, may expose sensitive patterns that model confidential knowledge (e.g., trips to mental health clinics from a string representing a user’s location history). In this talk, I will consider the problem of sanitizing a string by concealing the occurrences of sensitive patterns, while maintaining data utility, in two settings that are relevant to many common string processing tasks. In the first setting, the goal is to generate the minimal-length string that preserves the order of appearance and frequency of all non-sensitive patterns. In the second setting, the goal is to generate a string that is at minimal edit distance from the original string, in addition to preserving the order of appearance and frequency of all non-sensitive patterns. I will present algorithms for each setting and experiments evaluating these algorithms.
Grigorios Loukides is currently an Associate Professor at the Department of Informatics King’s College London. His main research interest is data mining. Grigorios’ research investigates theoretical and practical aspects including algorithmic design and optimization and considers applications including social networks and biomedical informatics.